Tetrahedron Letters 49 (2008) 5067–5069

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A differential receptor for selective and quantitative multi-ion analysis for Co^{2+} and Ni^{2+}/Cu^{2+}

Navneet Kaur, Subodh Kumar *

Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India

article info

Article history: Received 25 March 2008 Revised 5 June 2008 Accepted 8 June 2008 Available online 12 June 2008

ABSTRACT

The differential mode of complexation of chromogenic sensor **3** with Co^{2+} versus Ni²⁺ (or Cu²⁺) at pH 4.0 in water leads to new absorption bands at λ_{max} 620 nm in the case of Co²⁺, at λ_{max} 380 and 460 nm for Ni²⁺ and at λ_{max} 460 nm for Cu²⁺. These differential responses allow sensor 3 to be used for the selective and quantitative estimation of Co^{2+} and Ni^{2+} or Co^{2+} and Cu^{2+} from their mixtures.

- 2008 Elsevier Ltd. All rights reserved.

Highly selective cation or anion sensing is important in many areas of technology, including environmental, biological, clinical and waste management applications.^{[1](#page-2-0)} Various concepts in metal ion sensing have been installed to enhance sensitivity, selectivity and the dynamic working range.^{1,2} However, equipping the chromophores with more than one chemically addressable group still poses a major challenge. Such dual-responsive chromophores can find applications as 'molecular logic gates' and ion-pair indicators, in co-operative recognition of two different analytes or for the analysis of a single analyte with enhanced sensitivity and selectivity due to co-operative forces. 3

More recently, the paradigm shift from selective to differential receptors has provided opportunities for single molecular-based simultaneous estimation of more than one analyte by single detection method, 4 or alternatively, by using an array of detection meth-ods.^{[5](#page-2-0)} The availability of mathematical analysis systems^{[6](#page-2-0)} such as PCA (Principal component analysis), HCT (hierarchical cluster theory) and ANNs (Artificial neural network) has further facilitated the direct multiple estimations.

Recently, $4a$ we have reported that differential complexation of chemosensor A (Scheme 1) with two distinctly ionisable (OH and NH) groups leads to two different bathochromic shifted absorption bands (also associated with different colours) on addition of $Cu²⁺$ or Ni^{2+} . This enabled simultaneous estimation of Cu²⁺ and Ni²⁺ from their mixtures.

In continuation of our work, $4a$, 7 we have designed a new anthracene-9,10-dione based chromogenic sensor 3 (red, λ_{max} 510 nm) which possesses three amine nitrogens with distinctly different pK_a values, that is, alkyl amine pK_a 8.4; pyridyl amine pK_a 4.4 and aryl amine $pK_a \le 2.5$, MeOH–H₂O (4:1) (Supplementary data, Fig. S1). Due to pH dependent availability of various amine nitro-

gens for coordination with metal ions, the chemosensor 3 shows pH dependent colour changes with selected metal ions. Chemosensor 3 at pH 4.0 (sodium acetate–acetic acid buffer) undergoes characteristic colour changes only on addition of $Co²⁺$ (blue, λ_{max} 620 nm), Ni²⁺ (yellowish pink, λ_{max} 380, 460 and 510 nm) and Cu²⁺ (yellow, λ_{max} 460 nm) [\(Fig. 1](#page-1-0)), whereas other metal ions do not affect the absorbance spectrum of 3. This situation allows both

Corresponding author. Tel.: +91 0183 2258802; fax: +91 0183 2258820. E-mail address: subodh_gndu@yahoo.co.in (S. Kumar).

^{0040-4039/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.06.023

Figure 1. Differently shifted spectral responses and visual colour changes of sensor 3 on addition of Co^{2+} , Cu^{2+} and Ni^{2+} .

qualitative (naked eye colour change) and quantitative (spectrophotometer) analysis of two analytes, that is, $Co²⁺$ and $Cu²⁺$ or $Co²⁺$ and Ni²⁺ from their mixtures. Unlike conventional array-based systems,^{[5](#page-2-0)} the present approach involves direct correlation of absorbances at designated wavelengths with respect to the concentration of metal ions. This constitutes the first example of a single molecular multianalyte optical sensor for simultaneous analysis of Co^{2+} and Cu^{2+}/Ni^{2+} in water.

1-(2-Hydroxyethylamino)-anthracene-9,10-dione (1) on bromination with HBr-acetic acid (33%) gave 2 (60%) as a red solid, mp 155 °C, M⁺ m/z 329, 331 (1:1). Nucleophilic substitution of 2 with di-(2-picolyl)amine gave 3 (60%) as a red solid, mp 135 °C, M^{+} m/z 448 [\(Scheme 1\)](#page-0-0).^{[8](#page-2-0)}

A solution of 3 (50 μ M) (CH₃OH–H₂O 4:1, 10 mM HEPES, pH 7.0 \pm 0.1), on addition of solutions of Co²⁺, Ni²⁺ and Cu²⁺, showed a visible colour change from red to blue and their UV–vis spectra exhibited differently red shifted absorption bands (Supplementary data, Figs. S2–S4). The addition of other metal ions K⁺, Mg²⁺, Ca²⁺, Sr^{2+} , Zn^{2+} , Cd^{2+} , Ag^{+} , Pb^{2+} , etc., even at 0.01 M concentrations caused negligible responses to the absorbance of sensor 3. The combination of pH and UV–vis titrations of 1:1 solutions of 3 with $Co²⁺$, Ni²⁺, Cu²⁺ could rationalise a diagnostic pattern for their simultaneous estimation. A 1:1 solution of 3 and $Co²⁺$ (methanol–water: 4:1) on moving from pH 12 to 2 remained blue in colour and showed only small changes in absorbance and λ_{max} values in this pH range (Supplementary data, Fig. S5). The 1:1 solutions of **3** with Cu²⁺ and Ni²⁺ remained blue between pH 12 and 6, but on further lowering the pH, the blue colour slowly faded with the appearance of a yellow/pinkish-yellow colour at pH 4 which persisted even at pH 2 (Supplementary data, Figs. S6 and S7). These results clearly pointed to the differential colour changes of 3 with $Co²⁺$, Ni²⁺ and Cu²⁺ at pH ≤ 4 .

A solution of 3 (50 μ M) in sodium acetate–acetic acid buffer (pH 4.0) on addition of Co²⁺, Ni²⁺ and Cu²⁺ gave respective blue (λ_{max}) 620 nm), yellowish pink (λ_{max} 380, 460 and 510 nm) and yellow $(\lambda_{\text{max}}$ 460 nm) colours (Fig. 2) (Supplementary data, Fig. S8). The spectral fitting of the titration data of 3 against $Co²⁺$, Ni²⁺ and Cu²⁺ shows the formation of 1:1 (3–M²⁺) complexes with $\log \beta$ values of 6.75 ± 0.35 , 5.86 ± 0.35 and 7.10 ± 0.72 . The linear increase in absorbances between 5 and 50 μ M metal ion concentrations allows their individual quantitative estimations. Significantly, the addition of other metal ions, viz. K⁺, Mg²⁺, Ca²⁺, Sr²⁺, Zn²⁺, Cd²⁺, Ag⁺ and Pb²⁺ (0.01 M) to a solution of **3** (at pH 4.0) causes insignificant changes in the absorbance spectrum of 3 (Supplementary data, Fig. S9).

Therefore, at pH 4, in titrations of 3 with Co^{2+} , Ni²⁺ and Cu²⁺, the appearance of a new absorption at 580–700 nm in the case of $Co²⁺$ and the lack of any absorbance due to Ni^{2+} and Cu^{2+} complexes in this region enables the estimation of Co²⁺ (~620 nm). Further, the appearance of an isosbestic point at 416 nm in the case of the titra-

Figure 2. Responses of the absorption spectra of 3 (50 μ M) (H₂O, acetic acid– sodium acetate, pH 4.0 \pm 0.1) towards 2.5 µM incremental addition of (a) Co²⁺ and $(b) Cu²⁺.$

tion of 3 with Co^{2+} and the increase in absorbance at 416 nm in the case of titrations with Cu^{2+} and Ni²⁺ enables the estimation of Cu^{2+} and Ni^{2+} (at 416 nm) in the presence of Co²⁺.

The absorbance spectra of a solution of 3 and various mixtures of Co^{2+} and Ni²⁺ or Co^{2+} and Cu^{2+} show well-defined changes at λ_{max} 620 nm and at 416 nm arising, respectively, due to Co²⁺ and $Ni²⁺/Cu²⁺$ (Supplementary data, Fig. S10).

The plots of concentration of Co^{2+} , Ni²⁺ and Cu^{2+} from their individual solutions and their comparison with those from mixtures of $Co²⁺$ and Ni²⁺ or $Co²⁺$ and $Cu²⁺$ show that absorbances arising due to the presence of 0.3×10^{-5} M–2.7 $\times 10^{-5}$ M Co²⁺ and Cu²⁺ or $Co²⁺$ and Ni²⁺ can be measured accurately from their mixtures within ±5% error ([Fig. 3\)](#page-2-0) (Supplementary data, Fig. S11) with the limiting condition that the total concentration of metal ions being analysed should not be more than 3.0×10^{-5} M.

The stimuli interaction induced blue^{[9](#page-2-0)} and red^{9,10} shifts in a chromophore are marked with the respective decrease or increase in electron-donating abilities of the substituents participating in interactions and makes the basis for differential modes of complexation. At pH 7.0, the red shift in the case of Co^{2+} , Ni²⁺ and $Cu²⁺$ points to aryl NH deprotonation. However, under acidic conditions, that is, at pH 4.0, the blue shift in the case of $Ni²⁺$ and $Cu²⁺$ and red shift in $Co²⁺$ shows the differential mode of interaction of these metal ions towards sensor 3. Here, aryl NH coordinates with Ni^{2+} and Cu^{2+} to cause hypsochromic shift, however, $Co²⁺$ coordination along with deprotonation results in increased electron-density and red shift of the spectral band. As single crystals of complexes of 3 with Co^{2+} , Ni^{2+} , Cu^{2+} , etc., could not be obtained, conclusive evidence in favour of mode of complexation cannot be given.

Thus, sensor 3 is the first example of a single molecular multianalyte optical sensor which can simultaneously analyse $Co²⁺$ and Cu^{2+}/Ni^{2+} in water (pH 4.0).

Figure 3. Comparison of the absorbance of **3** on addition of only Co^{2+} or Ni^{2+} with those of their mixtures, (a) Co^{2+} only and mixture of Co^{2+} and Ni²⁺, (b) Ni²⁺ only and a mixture of Co^{2+} and Ni^{2+} .

Acknowledgement

We thank DST, New Delhi for a Rammana Fellowship to S.K. and CSIR, New Delhi for SRF to N.K.

Supplementary data

Selected absorption plots for sensor 3. Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.2008.06.023.](http://dx.doi.org/10.1016/j.tetlet.2008.06.023)

References and notes

1. (a) de Silva, A. P.; Gunaratne, H. Q.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566; (b) Fabrizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 197–202; (c) Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419–4476; (d) Callan, J. F.; de Silva, A. P.; Magro, D. C. Tetrahedron 2005, 61, 8551–8588; (e) Martinez-Manez, R.; Sancenon, F. Coord. Chem. Rev. 2006, 250, 3081–3093; (f) Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094–3117.

- 2. (a) Glass, T. E. J. Am. Chem. Soc. 2000, 122, 4522–4523; (b) Wiskur, S. L.; Ait-Haddou, H.; Anslyn, E. V.; Lavigne, J. J. Acc. Chem. Res. 2001, 34, 963–972; (c) Rurack, K.; Resch-Genger, U. Chem. Soc. Rev. 2002, 31, 116–127.
- 3. (a) Anslyn, E. V. J. Org. Chem. 2007, 72, 687–699; (b) Lavigne, J. J.; Anslyn, E. V. Angew. Chem., Int. Ed. 2001, 40, 3118-3130; (c) Garcia-Acosta, B.; Martinez-Manez, R.; Sancenon, F.; Soto, J.; Rurack, K.; Spieles, M.; Garcia-Breijo, E.; Gil, L. Inorg. Chem. 2007, 46, 3123–3135.
- (a) Kaur, N.; Kumar, S. Chem. Commun. 2007, 3069-3070; (b) Komatsu, H.; Miki, T.; Citterio, D.; Kubota, T.; Shindo, Y.; Kitamura, Y.; Oka, K.; Suzuki, K. J. Am. Chem. Soc. 2005, 127, 10798–10799; (c) Komatsu, H.; Citterio, D.; Fujiwara, Y.; Minamihashi, K.; Araki, Y.; Hagiwara, M.; Suzuki, K. Org. Lett. 2005, 7, 2857– 2859; (d) Raimundo, I. M.; Narayanaswamy, R. Sens. Actuators, B 2003, 90, 189– 197; (e) Mikami, D.; Ohki, T.; Yamaji, K.; Citterio, D.; Ishihara, S.; Hagiwara, M.; Suzuki, K. Anal. Chem. 2004, 76, 5726–5733.
- 5. (a) Schmittel, M.; Lin, H.-W. Angew. Chem., Int. Ed. 2007, 46, 893–896; (b) Jimenez, D.; Martinez-Manez, R.; Sancenon, F.; Soto, J. Tetrahedron Lett. 2004, 45, 1257–1259.
- 6. (a) Cho, E. J.; Bright, F. V. Anal. Chem. 2002, 74, 1462–1466; (b) Goodey, A.; Lavigne, J. J.; Savoy, S. M.; Rodriguez, M.; Curey, T.; Tsao, A.; Simmons, G.; Wright, J.; Yoo, S.-J.; Sohn, Y.; Anlsyn, E. V.; Shear, J. B.; Neikirk, D. P.; McDevitt, J. T. J. Am. Chem. Soc. 2001, 123, 2559–2570; (c) Lee, T. A.; Headley, L. M.; Hardy, J. K. Anal. Chem. 1991, 63, 357–360.
- 7. (a) Kumar, S.; Kaur, N. Supramol. Chem. 2006, 18, 137–140; (b) Kaur, N.; Kumar, S. Dalton Trans. 2006, 3766-3771; (c) Kaur, N.; Kumar, S. Tetrahedron Lett. 2006, 47, 4109–4112.
- 8. Compound 2: (60%), red solid, mp 155 °C (CH₃CN); FAB mass M⁺ m/z 329, 331 (1:1) (M⁺); IR v_{max} (CHCl₃) 1627, 1664 cm⁻¹; ¹H NMR (300 MHz; CDCl₃): δ 3.62 $(t, J = 6.6 \text{ Hz}, 2H, CH_2)$, 3.98 (q, J = 6.6 Hz, 2H, CH₂), 7.07 (d, J = 8.7 Hz, 1H, ArH), 7.56–7.67 (m, 2H, ArH), 7.72–7.83 (m, 2H, ArH), 8.23–8.32 (m, 2H, ArH), 9.99 (br s, 1H, NH); ¹³C NMR (normal/DEPT-135) (75 MHz; CDCl₃): δ 42.3 (CH₂), 44.5 (CH2), 113.7 (C), 116.3 (CH), 117.3 (CH), 126.7 (CH), 126.8 (CH), 132.9 (C), 133.2 (CH), 134.0 (CH), 134.8 (C), 134.8 (C), 135.4 (CH), 151.0 (C), 183.6 (C), 185.34 (C) (Found: C, 57.93; H, 3.98; N, 4.09. $C_{16}H_{12}BrNO_2$ requires C, 58.20; H, 3.66; N, 4.24.).

Compound 3: (60%); red solid; mp 135 °C (CH₂Cl₂); FAB mass M⁺ m/z 448 (M⁺); IR v_{max} (CHCl₃): δ 2.96 (t, J = 6.0 Hz, 2H, CH₂), 3.45 (q, J = 6.0 Hz, 2H, CH₂), 3.94 (s, 4H, 2 × CH₂), 6.94 (d, J = 8.7 Hz, 1H, ArH), 7.13 (t, J = 6.6 Hz, 2H, ArH), 7.47 (t, J = 7.5 Hz, 1H.
ArH), 7.57 (d, J = 7.5 Hz, 1H, ArH), 7.64 (t, J = 7.5 Hz, 2H, ArH), 7.70–7.84 (m, 4H.
ArH), 8.25 (d, J = 7.5 Hz, 1H, ArH), 8.36 (d, J = 2H, ArH), 9.95 (br s, 1H, NH, exchanges with D_2O); ¹³C NMR (normal/DEPT-135) (75 MHz; CDCl₃): δ 40.4 (CH₂), 52.5 (CH₂), 60.6 (CH₂), 113.1 (C), 115.6 (CH), 118.0 (CH), 122.1 (CH), 123.4 (CH), 126.6 (CH), 126.7 (CH), 132.9 (CH), 133.0 (C), 133.9 (CH), 135.1 (CH), 136.6 (CH), 148.8 (CH), 151.3 (C), 159.0 (C), 183.9 (C), 184.6 (C) (Found: C, 74.76; H, 5.67; N, 12.65. C₂₈H₂₄N₄O₂ requires C, 74.98; H, 5.39; N, 12.49).

- 9. Lu, C.; Xu, Z.; Cui, J.; Zhang, R.; Qian, X. J. Org. Chem. 2007, 72, 3554–3557.
- 10. (a) Xu, Z.; Qian, X.; Cui, J.; Zhang, R. Tetrahedron 2006, 62, 10117–10122; (b) Xu, Z.; Qian, X.; Cui, J. Org. Lett. 2005, 7, 3029–3032; (c) Boiocchi, M.; Boca, L. D.; Gomez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monazani, E. J. Am. Chem. Soc. 2004, 126, 16507–16514; (d) Gomez, D. E.; Fabbrizzi, L.; Licchelli, M. J. Org. Chem. 2005, 70, 5717–5720.